
libSRTP 1.5.2 Overview and Reference Manual

David A. McGrew
mcgrew@cisco.com

Preface

The original implementation and documentation of libSRTP was written by David McGrew of Cisco Systems, Inc. in
order to promote the use, understanding, and interoperability of Secure RTP. Michael Jerris contributed support for
building under MSVC. Andris Pavenis contributed many important fixes. Brian West contributed changes to enable
dynamic linking. Yves Shumann reported documentation bugs. Randell Jesup contributed a working SRTCP imple-
mentation and other fixes. Alex Vanzella and Will Clark contributed changes so that the AES ICM implementation can
be used for ISMA media encryption. Steve Underwood contributed x86 64 portability changes. We also give thanks to
Fredrik Thulin, Brian Weis, Mark Baugher, Jeff Chan, Bill Simon, Douglas Smith, Bill May, Richard Preistley, Joe Tardo
and others for contributions, comments, and corrections.

This reference material in this documenation was generated using the doxygen utility for automatic documentation of
source code.

©2001-2005 by David A. McGrew, Cisco Systems, Inc.

Contents

1 Introduction to libSRTP 1

1.1 License and Disclaimer . 1

1.2 Supported Features . 2

1.3 Installing and Building libSRTP . 3

1.4 Applications . 4

1.5 Secure RTP Background . 5

1.6 libSRTP Overview . 6

1.7 Example Code . 7

1.8 ISMA Encryption Support . 7

2 Module Index 9

2.1 Modules . 9

3 Data Structure Index 11

3.1 Data Structures . 11

i

ii CONTENTS

4 Module Documentation 13

4.1 Secure RTP . 13

4.2 Secure RTCP . 33

4.3 data associated to a SRTP session. 35

4.4 SRTP events and callbacks . 37

4.5 Cryptographic Algorithms . 40

4.6 Cipher Types . 41

4.7 Authentication Function Types . 44

4.8 Error Codes . 46

4.9 Cryptographic Kernel . 48

4.10 Ciphers . 49

5 Data Structure Documentation 51

5.1 crypto policy t Struct Reference . 51

5.2 debug module t Struct Reference . 53

5.3 srtp event data t Struct Reference . 53

5.4 srtp policy t Struct Reference . 54

5.5 ssrc t Struct Reference . 56

Index 58

Chapter 1

Introduction to libSRTP

This document describes libSRTP, the Open Source Secure RTP library from Cisco Systems, Inc. RTP is the Real-time
Transport Protocol, an IETF standard for the transport of real-time data such as telephony, audio, and video, defined
by RFC 3550. Secure RTP (SRTP) is an RTP profile for providing confidentiality to RTP data and authentication to the
RTP header and payload. SRTP is an IETF Proposed Standard, defined in RFC 3711, and was developed in the IETF
Audio/Video Transport (AVT) Working Group. This library supports all of the mandatory features of SRTP, but not all of
the optional features. See the Supported Features section for more detailed information.

This document is organized as follows. The first chapter provides background material on SRTP and overview of lib←↩
SRTP. The following chapters provide a detailed reference to the libSRTP API and related functions. The reference
material is created automatically (using the doxygen utility) from comments embedded in some of the C header files.
The documentation is organized into modules in order to improve its clarity. These modules do not directly corre-
spond to files. An underlying cryptographic kernel provides much of the basic functionality of libSRTP, but is mostly
undocumented because it does its work behind the scenes.

1.1 License and Disclaimer

libSRTP is distributed under the following license, which is included in the source code distribution. It is reproduced in
the manual in case you got the library from another source.

Copyright (c) 2001-2005 Cisco Systems, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1

2 CHAPTER 1. INTRODUCTION TO LIBSRTP

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the Cisco Systems, Inc. nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Supported Features

This library supports all of the mandatory-to-implement features of SRTP (as defined by the most recent Internet Draft).
Some of these features can be selected (or de-selected) at run time by setting an appropriate policy; this is done using
the structure srtp policy t. Some other behaviors of the protocol can be adapted by defining an approriate event handler
for the exceptional events; see the SRTP events and callbacks section.

Some options that are not included in the specification are supported. Most notably, the TMMH authentication function
is included, though it was removed from the SRTP Internet Draft during the summer of 2002.

Some options that are described in the SRTP specification are not supported. This includes

• the Master Key Index (MKI),

• key derivation rates other than zero,

• the cipher F8,

• anti-replay lists with sizes other than 128,

• the use of the packet index to select between master keys.

The user should be aware that it is possible to misuse this libary, and that the result may be that the security level it
provides is inadequate. If you are implementing a feature using this library, you will want to read the Security Consid-

1.3. INSTALLING AND BUILDING LIBSRTP 3

erations section of the Internet Draft. In addition, it is important that you read and understand the terms outlined in the
License and Disclaimer section.

1.3 Installing and Building libSRTP

To install libSRTP, download the latest release of the distribution from srtp.sourceforge.net. The format of the
names of the distributions are srtp-A.B.C.tgz, where A is the version number, B is the major release number, C
is the minor release number, and tgz is the file extension1 You probably want to get the most recent release. Unpack
the distribution and extract the source files; the directory into which the source files will go is named srtp.

libSRTP uses the GNU autoconf and make utilities2. In the srtp directory, run the configure script and then make:

./configure [options]
make

The configure script accepts the following options:

–help provides a usage summary.

–disable-debug compiles libSRTP without the runtime dynamic debugging system.

–enable-generic-aesicm compile in changes for ismacryp

–enable-syslog use syslog for error reporting.

–disable-stdout diables stdout for error reporting.

–enable-console use /dev/console for error reporting

–gdoi use GDOI key management (disabled at present).

By default, dynamic debugging is enabled and stdout is used for debugging. You can use the configure options to have
the debugging output sent to syslog or the system console. Alternatively, you can define ERR REPORTING FILE in
include/conf.h to be any other file that can be opened by libSRTP, and debug messages will be sent to it.

This package has been tested on the following platforms: Mac OS X (powerpc-apple-darwin1.4), Cygwin (i686-pc-
cygwin), Solaris (sparc-sun-solaris2.6), RedHat Linux 7.1 and 9 (i686-pc-linux), and OpenBSD (sparc-unknown-openbsd2.7).

1The extension .tgz is identical to tar.gz, and indicates a compressed tar file.
2BSD make will not work; if both versions of make are on your platform, you can invoke GNU make as gmake.

4 CHAPTER 1. INTRODUCTION TO LIBSRTP

1.4 Applications

Several test drivers and a simple and portable srtp application are included in the test/ subdirectory.

Test driver Function tested
kernel driver crypto kernel (ciphers, auth funcs, rng)
srtp driver srtp in-memory tests (does not use the network)
rdbx driver rdbx (extended replay database)
roc driver extended sequence number functions
replay driver replay database
cipher driver ciphers
auth driver hash functions

The app rtpw is a simple rtp application which reads words from /usr/dict/words and then sends them out one at a time
using [s]rtp. Manual srtp keying uses the -k option; automated key management using gdoi will be added later.

The usage for rtpw is

rtpw [[-d <debug>]* [-k <key> [-a][-e]] [-s | -r] dest ip dest port] | [-l]

Either the -s (sender) or -r (receiver) option must be chosen. The values dest ip, dest port are the IP address and UDP
port to which the dictionary will be sent, respectively. The options are:

-s (S)RTP sender - causes app to send words
-r (S)RTP receive - causes app to receive words
-k <key> use SRTP master key <key>, where the key is a hexadecimal value (without the leading ”0x”)
-e encrypt/decrypt (for data confidentiality) (requires use of -k option as well)
-a message authentication (requires use of -k option as well)
-l list the available debug modules
-d <debug> turn on debugging for module <debug>

In order to get a random 30-byte value for use as a key/salt pair, you can use the rand gen utility in the test/
subdirectory.

An example of an SRTP session using two rtpw programs follows:

[sh1] set k=‘test/rand_gen -n 30‘
[sh1] echo $k
c1eec3717da76195bb878578790af71c4ee9f859e197a414a78d5abc7451

1.5. SECURE RTP BACKGROUND 5

[sh1]$ test/rtpw -s -k $k -ea 0.0.0.0 9999
Security services: confidentiality message authentication
set master key/salt to C1EEC3717DA76195BB878578790AF71C/4EE9F859E197A414A78D5ABC7451
setting SSRC to 2078917053
sending word: A
sending word: a
sending word: aa
sending word: aal
sending word: aalii
sending word: aam
sending word: Aani
sending word: aardvark
...

[sh2] set k=c1eec3717da76195bb878578790af71c4ee9f859e197a414a78d5abc7451
[sh2]$ test/rtpw -r -k $k -ea 0.0.0.0 9999
security services: confidentiality message authentication
set master key/salt to C1EEC3717DA76195BB878578790AF71C/4EE9F859E197A414A78D5ABC7451
19 octets received from SSRC 2078917053 word: A
19 octets received from SSRC 2078917053 word: a
20 octets received from SSRC 2078917053 word: aa
21 octets received from SSRC 2078917053 word: aal
...

1.5 Secure RTP Background

In this section we review SRTP and introduce some terms that are used in libSRTP. An RTP session is defined by a
pair of destination transport addresses, that is, a network address plus a pair of UDP ports for RTP and RTCP. RTCP,
the RTP control protocol, is used to coordinate between the participants in an RTP session, e.g. to provide feedback
from receivers to senders. An SRTP session is similarly defined; it is just an RTP session for which the SRTP profile is
being used. An SRTP session consists of the traffic sent to the SRTP or SRTCP destination transport addresses. Each
participant in a session is identified by a synchronization source (SSRC) identifier. Some participants may not send any
SRTP traffic; they are called receivers, even though they send out SRTCP traffic, such as receiver reports.

RTP allows multiple sources to send RTP and RTCP traffic during the same session. The synchronization source
identifier (SSRC) is used to distinguish these sources. In libSRTP, we call the SRTP and SRTCP traffic from a particular
source a stream. Each stream has its own SSRC, sequence number, rollover counter, and other data. A particular
choice of options, cryptographic mechanisms, and keys is called a policy. Each stream within a session can have a
distinct policy applied to it. A session policy is a collection of stream policies.

A single policy can be used for all of the streams in a given session, though the case in which a single key is shared
across multiple streams requires care. When key sharing is used, the SSRC values that identify the streams must

6 CHAPTER 1. INTRODUCTION TO LIBSRTP

be distinct. This requirement can be enforced by using the convention that each SRTP and SRTCP key is used for
encryption by only a single sender. In other words, the key is shared only across streams that originate from a particular
device (of course, other SRTP participants will need to use the key for decryption). libSRTP supports this enforcement
by detecting the case in which a key is used for both inbound and outbound data.

1.6 libSRTP Overview

libSRTP provides functions for protecting RTP and RTCP. RTP packets can be encrypted and authenticated (using the
srtp protect() function), turning them into SRTP packets. Similarly, SRTP packets can be decrypted and have their
authentication verified (using the srtp unprotect() function), turning them into RTP packets. Similar functions apply
security to RTCP packets.

The typedef srtp stream t points to a structure holding all of the state associated with an SRTP stream, including the
keys and parameters for cipher and message authentication functions and the anti-replay data. A particular srtp ←↩
stream t holds the information needed to protect a particular RTP and RTCP stream. This datatype is intentionally
opaque in order to better seperate the libSRTP API from its implementation.

Within an SRTP session, there can be multiple streams, each originating from a particular sender. Each source uses a
distinct stream context to protect the RTP and RTCP stream that it is originating. The typedef srtp t points to a structure
holding all of the state associated with an SRTP session. There can be multiple stream contexts associated with a
single srtp t. A stream context cannot exist indepent from an srtp t, though of course an srtp t can be created that
contains only a single stream context. A device participating in an SRTP session must have a stream context for each
source in that session, so that it can process the data that it receives from each sender.

In libSRTP, a session is created using the function srtp create(). The policy to be implemented in the session is passed
into this function as an srtp policy t structure. A single one of these structures describes the policy of a single stream.
These structures can also be linked together to form an entire session policy. A linked list of srtp policy t structures is
equivalent to a session policy. In such a policy, we refer to a single srtp policy t as an element.

An srtp policy t strucutre contains two crypto policy t structures that describe the cryptograhic policies for RTP and
RTCP, as well as the SRTP master key and the SSRC value. The SSRC describes what to protect (e.g. which stream),
and the crypto policy t structures describe how to protect it. The key is contained in a policy element because it
simplifies the interface to the library. In many cases, it is desirable to use the same cryptographic policies across all of
the streams in a session, but to use a distinct key for each stream. A crypto policy t structure can be initialized by using
either the crypto policy set rtp default() or crypto policy set rtcp default() functions, which set a crypto policy structure
to the default policies for RTP and RTCP protection, respectively.

1.7. EXAMPLE CODE 7

1.7 Example Code

This section provides a simple example of how to use libSRTP. The example code lacks error checking, but is functional.
Here we assume that the value ssrc is already set to describe the SSRC of the stream that we are sending, and that
the functions get rtp packet() and send srtp packet() are available to us. The former puts an RTP packet into the buffer
and returns the number of octets written to that buffer. The latter sends the RTP packet in the buffer, given the length
as its second argument.

srtp_t session;
srtp_policy_t policy;
uint8_t key[30];

// initialize libSRTP
srtp_init();

// set policy to describe a policy for an SRTP stream
crypto_policy_set_rtp_default(&policy.rtp);
crypto_policy_set_rtcp_default(&policy.rtcp);
policy.ssrc = ssrc;
policy.key = key;
policy.next = NULL;

// set key to random value
crypto_get_random(key, 30);

// allocate and initialize the SRTP session
srtp_create(&session, &policy);

// main loop: get rtp packets, send srtp packets
while (1) {

char rtp_buffer[2048];
unsigned len;

len = get_rtp_packet(rtp_buffer);
srtp_protect(session, rtp_buffer, &len);
send_srtp_packet(rtp_buffer, len);

}

1.8 ISMA Encryption Support

The Internet Streaming Media Alliance (ISMA) specifies a way to pre-encrypt a media file prior to streaming. This
method is an alternative to SRTP encryption, which is potentially useful when a particular media file will be streamed
multiple times. The specification is available online at http://www.isma.tv/specreq.nsf/SpecRequest.

libSRTP provides the encryption and decryption functions needed for ISMAcryp in the library libaesicm.a, which is
included in the default Makefile target. This library is used by the MPEG4IP project; see http://mpeg4ip.←↩
sourceforge.net/.

http://www.isma.tv/specreq.nsf/SpecRequest
http://mpeg4ip.sourceforge.net/
http://mpeg4ip.sourceforge.net/

8 CHAPTER 1. INTRODUCTION TO LIBSRTP

Note that ISMAcryp does not provide authentication for RTP nor RTCP, nor confidentiality for RTCP. ISMAcryp RECO←↩
MMENDS the use of SRTP message authentication for ISMAcryp streams while using ISMAcryp encryption to protect
the media itself.

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Secure RTP . 13

Secure RTCP . 33
data associated to a SRTP session. 35
SRTP events and callbacks . 37

Cryptographic Algorithms . 40

Cipher Types . 41
Authentication Function Types . 44

Error Codes . 46
Cryptographic Kernel . 48

Ciphers . 49

9

10 CHAPTER 2. MODULE INDEX

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

crypto policy t
Crypto policy t describes a particular crypto policy that can be applied to an SRTP stream 51

debug module t . 53
srtp event data t

Srtp event data t is the structure passed as a callback to the event handler function 53
srtp policy t

Policy for an SRTP session . 54
ssrc t

An ssrc t represents a particular SSRC value, or a ‘wildcard’ SSRC 56

11

12 CHAPTER 3. DATA STRUCTURE INDEX

Chapter 4

Module Documentation

4.1 Secure RTP

libSRTP provides functions for protecting RTP and RTCP. See Section libSRTP Overview for an introduction to the use
of the library.

Modules

• Secure RTCP

Secure RTCP functions are used to protect RTCP traffic.

• data associated to a SRTP session.

Store custom user data within a SRTP session.

• SRTP events and callbacks

libSRTP can use a user-provided callback function to handle events.

Data Structures

• struct crypto policy t

crypto policy t describes a particular crypto policy that can be applied to an SRTP stream.

• struct ssrc t

An ssrc t represents a particular SSRC value, or a ‘wildcard’ SSRC.

• struct srtp policy t

13

14 CHAPTER 4. MODULE DOCUMENTATION

represents the policy for an SRTP session.

Macros

• #define SRTP MAX TRAILER LEN SRTP MAX TAG LEN

the maximum number of octets added by srtp protect().

• #define crypto policy set aes cm 128 hmac sha1 80(p) crypto policy set rtp default(p)

crypto policy set aes cm 128 hmac sha1 80() sets a crypto policy structure to the SRTP default policy for RTP protection.

Typedefs

• typedef struct crypto policy t crypto policy t

crypto policy t describes a particular crypto policy that can be applied to an SRTP stream.

• typedef struct ekt policy ctx t ∗ ekt policy t

points to an EKT policy

• typedef struct ekt stream ctx t ∗ ekt stream t

points to EKT stream data

• typedef struct srtp policy t srtp policy t

represents the policy for an SRTP session.

• typedef struct srtp ctx t ∗ srtp t

An srtp t points to an SRTP session structure.

• typedef struct srtp stream ctx t ∗ srtp stream t

An srtp stream t points to an SRTP stream structure.

Enumerations

• enum sec serv t { sec serv none = 0, sec serv conf = 1, sec serv auth = 2, sec serv conf and auth = 3 }
sec serv t describes a set of security services.

• enum ssrc type t { ssrc undefined = 0, ssrc specific = 1, ssrc any inbound = 2, ssrc any outbound = 3 }
ssrc type t describes the type of an SSRC.

Functions

• err status t srtp init (void)

srtp init() initializes the srtp library.

4.1. SECURE RTP 15

• err status t srtp shutdown (void)

srtp shutdown() de-initializes the srtp library.

• err status t srtp protect (srtp t ctx, void ∗rtp hdr, int ∗len ptr)

srtp protect() is the Secure RTP sender-side packet processing function.

• err status t srtp unprotect (srtp t ctx, void ∗srtp hdr, int ∗len ptr)

srtp unprotect() is the Secure RTP receiver-side packet processing function.

• err status t srtp create (srtp t ∗session, const srtp policy t ∗policy)

srtp create() allocates and initializes an SRTP session.

• err status t srtp add stream (srtp t session, const srtp policy t ∗policy)

srtp add stream() allocates and initializes an SRTP stream within a given SRTP session.

• err status t srtp remove stream (srtp t session, unsigned int ssrc)

srtp remove stream() deallocates an SRTP stream.

• void crypto policy set rtp default (crypto policy t ∗p)

crypto policy set rtp default() sets a crypto policy structure to the SRTP default policy for RTP protection.

• void crypto policy set rtcp default (crypto policy t ∗p)

crypto policy set rtcp default() sets a crypto policy structure to the SRTP default policy for RTCP protection.

• void crypto policy set aes cm 128 hmac sha1 32 (crypto policy t ∗p)

crypto policy set aes cm 128 hmac sha1 32() sets a crypto policy structure to a short-authentication tag policy

• void crypto policy set aes cm 128 null auth (crypto policy t ∗p)

crypto policy set aes cm 128 null auth() sets a crypto policy structure to an encryption-only policy

• void crypto policy set null cipher hmac sha1 80 (crypto policy t ∗p)

crypto policy set null cipher hmac sha1 80() sets a crypto policy structure to an authentication-only policy

• void crypto policy set aes cm 256 hmac sha1 80 (crypto policy t ∗p)

crypto policy set aes cm 256 hmac sha1 80() sets a crypto policy structure to a encryption and authentication policy
using AES-256 for RTP protection.

• void crypto policy set aes cm 256 hmac sha1 32 (crypto policy t ∗p)

crypto policy set aes cm 256 hmac sha1 32() sets a crypto policy structure to a short-authentication tag policy using
AES-256 encryption.

• void crypto policy set aes cm 256 null auth (crypto policy t ∗p)

crypto policy set aes cm 256 null auth() sets a crypto policy structure to an encryption-only policy

• void crypto policy set aes gcm 128 8 auth (crypto policy t ∗p)

crypto policy set aes gcm 128 8 auth() sets a crypto policy structure to an AEAD encryption policy.

• void crypto policy set aes gcm 256 8 auth (crypto policy t ∗p)

crypto policy set aes gcm 256 8 auth() sets a crypto policy structure to an AEAD encryption policy

• void crypto policy set aes gcm 128 8 only auth (crypto policy t ∗p)

crypto policy set aes gcm 128 8 only auth() sets a crypto policy structure to an AEAD authentication-only policy

• void crypto policy set aes gcm 256 8 only auth (crypto policy t ∗p)

crypto policy set aes gcm 256 8 only auth() sets a crypto policy structure to an AEAD authentication-only policy

• void crypto policy set aes gcm 128 16 auth (crypto policy t ∗p)

crypto policy set aes gcm 128 16 auth() sets a crypto policy structure to an AEAD encryption policy.

16 CHAPTER 4. MODULE DOCUMENTATION

• void crypto policy set aes gcm 256 16 auth (crypto policy t ∗p)

crypto policy set aes gcm 256 16 auth() sets a crypto policy structure to an AEAD encryption policy
• err status t srtp dealloc (srtp t s)

srtp dealloc() deallocates storage for an SRTP session context.
• err status t crypto policy set from profile for rtp (crypto policy t ∗policy, srtp profile t profile)

crypto policy set from profile for rtp() sets a crypto policy structure to the appropriate value for RTP based on an srtp ←↩
profile t

• err status t crypto policy set from profile for rtcp (crypto policy t ∗policy, srtp profile t profile)

crypto policy set from profile for rtcp() sets a crypto policy structure to the appropriate value for RTCP based on an
srtp profile t

• unsigned int srtp profile get master key length (srtp profile t profile)

returns the master key length for a given SRTP profile
• unsigned int srtp profile get master salt length (srtp profile t profile)

returns the master salt length for a given SRTP profile
• void append salt to key (unsigned char ∗key, unsigned int bytes in key, unsigned char ∗salt, unsigned int bytes←↩

in salt)

appends the salt to the key

4.1.1 Detailed Description

4.1.2 Macro Definition Documentation

#define crypto policy set aes cm 128 hmac sha1 80(p) crypto policy set rtp default(p)

Parameters

p is a pointer to the policy structure to be set

The function crypto policy set aes cm 128 hmac sha1 80() is a synonym for crypto policy set rtp default(). It conforms
to the naming convention used in RFC 4568 (SDP Security Descriptions for Media Streams).

Returns

void.

#define SRTP MAX TRAILER LEN SRTP MAX TAG LEN

SRTP MAX TRAILER LEN is the maximum length of the SRTP trailer (authentication tag and MKI) supported by lib←↩
SRTP. This value is the maximum number of octets that will be added to an RTP packet by srtp protect().

4.1. SECURE RTP 17

4.1.3 Typedef Documentation

typedef struct crypto policy t crypto policy t

A crypto policy t describes a particular cryptographic policy that can be applied to an SRTP or SRTCP stream. An
SRTP session policy consists of a list of these policies, one for each SRTP stream in the session.

typedef struct srtp policy t srtp policy t

A single srtp policy t struct represents the policy for a single SRTP stream, and a linked list of these elements represents
the policy for an entire SRTP session. Each element contains the SRTP and SRTCP crypto policies for that stream, a
pointer to the SRTP master key for that stream, the SSRC describing that stream, or a flag indicating a ‘wildcard’ SSRC
value, and a ‘next’ field that holds a pointer to the next element in the list of policy elements, or NULL if it is the last
element.

The wildcard value SSRC ANY INBOUND matches any SSRC from an inbound stream that for which there is no explicit
SSRC entry in another policy element. Similarly, the value SSRC ANY OUTBOUND will matches any SSRC from an
outbound stream that does not appear in another policy element. Note that wildcard SSRCs &b cannot be used to
match both inbound and outbound traffic. This restriction is intentional, and it allows libSRTP to ensure that no security
lapses result from accidental re-use of SSRC values during key sharing.

Warning

The final element of the list must have its ‘next’ pointer set to NULL.

typedef struct srtp stream ctx t∗ srtp stream t

The typedef srtp stream t is a pointer to a structure that represents an SRTP stream. This datatype is intentionally
opaque in order to separate the interface from the implementation.

An SRTP stream consists of all of the traffic sent to an SRTP session by a single participant. A session can be viewed
as a set of streams.

18 CHAPTER 4. MODULE DOCUMENTATION

typedef struct srtp ctx t∗ srtp t

The typedef srtp t is a pointer to a structure that represents an SRTP session. This datatype is intentially opaque in
order to separate the interface from the implementation.

An SRTP session consists of all of the traffic sent to the RTP and RTCP destination transport addresses, using the
RTP/SAVP (Secure Audio/Video Profile). A session can be viewed as a set of SRTP streams, each of which originates
with a different participant.

4.1.4 Enumeration Type Documentation

enum sec serv t

A sec serv t enumeration is used to describe the particular security services that will be applied by a particular crypto
policy (or other mechanism).

Enumerator

sec serv none no services

sec serv conf confidentiality

sec serv auth authentication

sec serv conf and auth confidentiality and authentication

enum ssrc type t

An ssrc type t enumeration is used to indicate a type of SSRC. See srtp policy t for more informataion.

Enumerator

ssrc undefined Indicates an undefined SSRC type.

ssrc specific Indicates a specific SSRC value

ssrc any inbound Indicates any inbound SSRC value (i.e. a value that is used in the function srtp unprotect())

ssrc any outbound Indicates any outbound SSRC value (i.e. a value that is used in the function srtp protect())

4.1. SECURE RTP 19

4.1.5 Function Documentation

void append salt to key (unsigned char ∗ key, unsigned int bytes in key, unsigned char ∗ salt, unsigned int
bytes in salt)

The function call append salt to key(k, klen, s, slen) copies the string s to the location at klen bytes following the location
k.

Warning

There must be at least bytes in salt + bytes in key bytes available at the location pointed to by key.

void crypto policy set aes cm 128 hmac sha1 32 (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes cm 128 hmac sha1 32(&p) sets the crypto policy t at location p to use policy
AES CM 128 HMAC SHA1 32 as defined in RFC 4568. This policy uses AES-128 Counter Mode encryption and H←↩
MAC-SHA1 authentication, with an authentication tag that is only 32 bits long. This length is considered adequate only
for protecting audio and video media that use a stateless playback function. See Section 7.5 of RFC 3711 (http←↩
://www.ietf.org/rfc/rfc3711.txt).

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Warning

This crypto policy is intended for use in SRTP, but not in SRTCP. It is recommended that a policy that uses longer
authentication tags be used for SRTCP. See Section 7.5 of RFC 3711 (http://www.ietf.org/rfc/rfc3711.←↩
txt).

Returns

void.

void crypto policy set aes cm 128 null auth (crypto policy t ∗ p)

http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt

20 CHAPTER 4. MODULE DOCUMENTATION

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes cm 128 null auth(&p) sets the crypto policy t at location p to use the SRTP de-
fault cipher (AES-128 Counter Mode), but to use no authentication method. This policy is NOT RECOMMENDED
unless it is unavoidable; see Section 7.5 of RFC 3711 (http://www.ietf.org/rfc/rfc3711.txt).

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Warning

This policy is NOT RECOMMENDED for SRTP unless it is unavoidable, and it is NOT RECOMMENDED at all for
SRTCP; see Section 7.5 of RFC 3711 (http://www.ietf.org/rfc/rfc3711.txt).

Returns

void.

void crypto policy set aes cm 256 hmac sha1 32 (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes cm 256 hmac sha1 32(&p) sets the crypto policy t at location p to use policy A←↩
ES CM 256 HMAC SHA1 32 as defined in draft-ietf-avt-srtp-big-aes-03.txt. This policy uses AES-256 Counter Mode
encryption and HMAC-SHA1 authentication, with an authentication tag that is only 32 bits long. This length is consid-
ered adequate only for protecting audio and video media that use a stateless playback function. See Section 7.5 of
RFC 3711 (http://www.ietf.org/rfc/rfc3711.txt).

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Warning

This crypto policy is intended for use in SRTP, but not in SRTCP. It is recommended that a policy that uses longer
authentication tags be used for SRTCP. See Section 7.5 of RFC 3711 (http://www.ietf.org/rfc/rfc3711.←↩
txt).

http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt

4.1. SECURE RTP 21

Returns

void.

void crypto policy set aes cm 256 hmac sha1 80 (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes cm 256 hmac sha1 80(&p) sets the crypto policy t at location p to use policy A←↩
ES CM 256 HMAC SHA1 80 as defined in draft-ietf-avt-srtp-big-aes-03.txt. This policy uses AES-256 Counter Mode
encryption and HMAC-SHA1 authentication, with an 80 bit authentication tag.

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

void.

void crypto policy set aes cm 256 null auth (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes cm 256 null auth(&p) sets the crypto policy t at location p to use the SRTP de-
fault cipher (AES-256 Counter Mode), but to use no authentication method. This policy is NOT RECOMMENDED
unless it is unavoidable; see Section 7.5 of RFC 3711 (http://www.ietf.org/rfc/rfc3711.txt).

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Warning

This policy is NOT RECOMMENDED for SRTP unless it is unavoidable, and it is NOT RECOMMENDED at all for
SRTCP; see Section 7.5 of RFC 3711 (http://www.ietf.org/rfc/rfc3711.txt).

http://www.ietf.org/rfc/rfc3711.txt
http://www.ietf.org/rfc/rfc3711.txt

22 CHAPTER 4. MODULE DOCUMENTATION

Returns

void.

void crypto policy set aes gcm 128 16 auth (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes gcm 128 16 auth(&p) sets the crypto policy t at location p to use the SRTP de-
fault cipher (AES-128 Galois Counter Mode) with 16 octet auth tag. This policy applies confidentiality and authentication
to both the RTP and RTCP packets.

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

void.

void crypto policy set aes gcm 128 8 auth (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes gcm 128 8 auth(&p) sets the crypto policy t at location p to use the SRTP de-
fault cipher (AES-128 Galois Counter Mode) with 8 octet auth tag. This policy applies confidentiality and authentication
to both the RTP and RTCP packets.

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

void.

4.1. SECURE RTP 23

void crypto policy set aes gcm 128 8 only auth (crypto policy t ∗ p)

24 CHAPTER 4. MODULE DOCUMENTATION

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes gcm 128 8 only auth(&p) sets the crypto policy t at location p to use the SRTP
default cipher (AES-128 Galois Counter Mode) with 8 octet auth tag. This policy applies confidentiality and authentica-
tion to the RTP packets, but only authentication to the RTCP packets.

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

void.

void crypto policy set aes gcm 256 16 auth (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes gcm 256 16 auth(&p) sets the crypto policy t at location p to use the SRTP de-
fault cipher (AES-256 Galois Counter Mode) with 16 octet auth tag. This policy applies confidentiality and authentication
to both the RTP and RTCP packets.

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

void.

void crypto policy set aes gcm 256 8 auth (crypto policy t ∗ p)

Parameters

4.1. SECURE RTP 25

p is a pointer to the policy structure to be set

The function call crypto policy set aes gcm 256 8 auth(&p) sets the crypto policy t at location p to use the SRTP de-
fault cipher (AES-256 Galois Counter Mode) with 8 octet auth tag. This policy applies confidentiality and authentication
to both the RTP and RTCP packets.

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

void.

void crypto policy set aes gcm 256 8 only auth (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set aes gcm 256 8 only auth(&p) sets the crypto policy t at location p to use the SRTP
default cipher (AES-256 Galois Counter Mode) with 8 octet auth tag. This policy applies confidentiality and authentica-
tion to the RTP packets, but only authentication to the RTCP packets.

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

void.

err status t crypto policy set from profile for rtcp (crypto policy t ∗ policy, srtp profile t profile)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set rtcp default(&policy, profile) sets the crypto policy t at location policy to the policy for
RTCP protection, as defined by the srtp profile t profile.

26 CHAPTER 4. MODULE DOCUMENTATION

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

values

• err status ok no problems were encountered

• err status bad param the profile is not supported

err status t crypto policy set from profile for rtp (crypto policy t ∗ policy, srtp profile t profile)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set rtp default(&policy, profile) sets the crypto policy t at location policy to the policy for
RTP protection, as defined by the srtp profile t profile.

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Returns

values

• err status ok no problems were encountered

• err status bad param the profile is not supported

void crypto policy set null cipher hmac sha1 80 (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set null cipher hmac sha1 80(&p) sets the crypto policy t at location p to use HMAC-←↩
SHA1 with an 80 bit authentication tag to provide message authentication, but to use no encryption. This policy is NOT
RECOMMENDED for SRTP unless there is a requirement to forego encryption.

4.1. SECURE RTP 27

This function is a convenience that helps to avoid dealing directly with the policy data structure. You are encouraged
to initialize policy elements with this function call. Doing so may allow your code to be forward compatible with later
versions of libSRTP that include more elements in the crypto policy t datatype.

Warning

This policy is NOT RECOMMENDED for SRTP unless there is a requirement to forego encryption.

Returns

void.

void crypto policy set rtcp default (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set rtcp default(&p) sets the crypto policy t at location p to the SRTP default policy for
RTCP protection, as defined in the specification. This function is a convenience that helps to avoid dealing directly with
the policy data structure. You are encouraged to initialize policy elements with this function call. Doing so may allow
your code to be forward compatible with later versions of libSRTP that include more elements in the crypto policy t
datatype.

Returns

void.

void crypto policy set rtp default (crypto policy t ∗ p)

Parameters

p is a pointer to the policy structure to be set

The function call crypto policy set rtp default(&p) sets the crypto policy t at location p to the SRTP default policy for
RTP protection, as defined in the specification. This function is a convenience that helps to avoid dealing directly with
the policy data structure. You are encouraged to initialize policy elements with this function call. Doing so may allow
your code to be forward compatible with later versions of libSRTP that include more elements in the crypto policy t
datatype.

28 CHAPTER 4. MODULE DOCUMENTATION

Returns

void.

err status t srtp add stream (srtp t session, const srtp policy t ∗ policy)

The function call srtp add stream(session, policy) allocates and initializes a new SRTP stream within a given, previously
created session, applying the policy given as the other argument to that stream.

Returns

values:

• err status ok if stream creation succeded.

• err status alloc fail if stream allocation failed

• err status init fail if stream initialization failed.

err status t srtp create (srtp t ∗ session, const srtp policy t ∗ policy)

The function call srtp create(session, policy, key) allocates and initializes an SRTP session context, applying the given
policy and key.

Parameters

session is a pointer to the SRTP session to which the policy is to be added.
policy is the srtp policy t struct that describes the policy for the session. The struct may be a single

element, or it may be the head of a list, in which case each element of the list is processed. It
may also be NULL, in which case streams should be added later using srtp add stream(). The
final element of the list must have its ‘next’ field set to NULL.

Returns

• err status ok if creation succeded.

• err status alloc fail if allocation failed.

• err status init fail if initialization failed.

4.1. SECURE RTP 29

err status t srtp dealloc (srtp t s)

The function call srtp dealloc(s) deallocates storage for the SRTP session context s. This function should be called no
more than one time for each of the contexts allocated by the function srtp create().

30 CHAPTER 4. MODULE DOCUMENTATION

Parameters

s is the srtp t for the session to be deallocated.

Returns

• err status ok if there no problems.

• err status dealloc fail a memory deallocation failure occured.

err status t srtp init (void)

Warning

This function must be called before any other srtp functions.

err status t srtp protect (srtp t ctx, void ∗ rtp hdr, int ∗ len ptr)

The function call srtp protect(ctx, rtp hdr, len ptr) applies SRTP protection to the RTP packet rtp hdr (which has length
∗len ptr) using the SRTP context ctx. If err status ok is returned, then rtp hdr points to the resulting SRTP packet and
∗len ptr is the number of octets in that packet; otherwise, no assumptions should be made about the value of either
data elements.

The sequence numbers of the RTP packets presented to this function need not be consecutive, but they must be out
of order by less than 2∧15 = 32,768 packets.

Warning

This function assumes that it can write the authentication tag into the location in memory immediately following
the RTP packet, and assumes that the RTP packet is aligned on a 32-bit boundary.
This function assumes that it can write SRTP MAX TRAILER LEN into the location in memory immediately fol-
lowing the RTP packet. Callers MUST ensure that this much writable memory is available in the buffer that holds
the RTP packet.

Parameters

4.1. SECURE RTP 31

ctx is the SRTP context to use in processing the packet.
rtp hdr is a pointer to the RTP packet (before the call); after the function returns, it points to the srtp

packet.
len ptr is a pointer to the length in octets of the complete RTP packet (header and body) before the

function call, and of the complete SRTP packet after the call, if err status ok was returned.
Otherwise, the value of the data to which it points is undefined.

Returns

• err status ok no problems

• err status replay fail rtp sequence number was non-increasing

• other failure in cryptographic mechanisms

err status t srtp remove stream (srtp t session, unsigned int ssrc)

The function call srtp remove stream(session, ssrc) removes the SRTP stream with the SSRC value ssrc from the
SRTP session context given by the argument session.

Parameters

session is the SRTP session from which the stream will be removed.
ssrc is the SSRC value of the stream to be removed.

Warning

Wildcard SSRC values cannot be removed from a session.

Returns

• err status ok if the stream deallocation succeded.

• [other] otherwise.

err status t srtp shutdown (void)

Warning

No srtp functions may be called after calling this function.

32 CHAPTER 4. MODULE DOCUMENTATION

err status t srtp unprotect (srtp t ctx, void ∗ srtp hdr, int ∗ len ptr)

The function call srtp unprotect(ctx, srtp hdr, len ptr) verifies the Secure RTP protection of the SRTP packet pointed to
by srtp hdr (which has length ∗len ptr), using the SRTP context ctx. If err status ok is returned, then srtp hdr points
to the resulting RTP packet and ∗len ptr is the number of octets in that packet; otherwise, no assumptions should be
made about the value of either data elements.

The sequence numbers of the RTP packets presented to this function need not be consecutive, but they must be out
of order by less than 2∧15 = 32,768 packets.

Warning

This function assumes that the SRTP packet is aligned on a 32-bit boundary.

Parameters

ctx is the SRTP session which applies to the particular packet.
srtp hdr is a pointer to the header of the SRTP packet (before the call). after the function returns, it points

to the rtp packet if err status ok was returned; otherwise, the value of the data to which it points
is undefined.

len ptr is a pointer to the length in octets of the complete srtp packet (header and body) before the func-
tion call, and of the complete rtp packet after the call, if err status ok was returned. Otherwise,
the value of the data to which it points is undefined.

Returns

• err status ok if the RTP packet is valid.

• err status auth fail if the SRTP packet failed the message authentication check.

• err status replay fail if the SRTP packet is a replay (e.g. packet has already been processed and accepted).

• [other] if there has been an error in the cryptographic mechanisms.

4.2. SECURE RTCP 33

4.2 Secure RTCP

Secure RTCP functions are used to protect RTCP traffic.

Functions

• err status t srtp protect rtcp (srtp t ctx, void ∗rtcp hdr, int ∗pkt octet len)

srtp protect rtcp() is the Secure RTCP sender-side packet processing function.
• err status t srtp unprotect rtcp (srtp t ctx, void ∗srtcp hdr, int ∗pkt octet len)

srtp unprotect rtcp() is the Secure RTCP receiver-side packet processing function.

4.2.1 Detailed Description

RTCP is the control protocol for RTP. libSRTP protects RTCP traffic in much the same way as it does RTP traffic.
The function srtp protect rtcp() applies cryptographic protections to outbound RTCP packets, and srtp unprotect rtcp()
verifies the protections on inbound RTCP packets.

A note on the naming convention: srtp protect rtcp() has an srtp t as its first argument, and thus has ‘srtp ’ as its prefix.
The trailing ‘ rtcp’ indicates the protocol on which it acts.

4.2.2 Function Documentation

err status t srtp protect rtcp (srtp t ctx, void ∗ rtcp hdr, int ∗ pkt octet len)

The function call srtp protect rtcp(ctx, rtp hdr, len ptr) applies SRTCP protection to the RTCP packet rtcp hdr (which
has length ∗len ptr) using the SRTP session context ctx. If err status ok is returned, then rtp hdr points to the resulting
SRTCP packet and ∗len ptr is the number of octets in that packet; otherwise, no assumptions should be made about
the value of either data elements.

Warning

This function assumes that it can write the authentication tag into the location in memory immediately following
the RTCP packet, and assumes that the RTCP packet is aligned on a 32-bit boundary.
This function assumes that it can write SRTP MAX TRAILER LEN+4 into the location in memory immediately
following the RTCP packet. Callers MUST ensure that this much writable memory is available in the buffer that
holds the RTCP packet.

34 CHAPTER 4. MODULE DOCUMENTATION

Parameters

ctx is the SRTP context to use in processing the packet.
rtcp hdr is a pointer to the RTCP packet (before the call); after the function returns, it points to the srtp

packet.
pkt octet len is a pointer to the length in octets of the complete RTCP packet (header and body) before the

function call, and of the complete SRTCP packet after the call, if err status ok was returned.
Otherwise, the value of the data to which it points is undefined.

Returns

• err status ok if there were no problems.

• [other] if there was a failure in the cryptographic mechanisms.

err status t srtp unprotect rtcp (srtp t ctx, void ∗ srtcp hdr, int ∗ pkt octet len)

The function call srtp unprotect rtcp(ctx, srtp hdr, len ptr) verifies the Secure RTCP protection of the SRTCP packet
pointed to by srtcp hdr (which has length ∗len ptr), using the SRTP session context ctx. If err status ok is returned,
then srtcp hdr points to the resulting RTCP packet and ∗len ptr is the number of octets in that packet; otherwise, no
assumptions should be made about the value of either data elements.

Warning

This function assumes that the SRTCP packet is aligned on a 32-bit boundary.

Parameters

ctx is a pointer to the srtp t which applies to the particular packet.
srtcp hdr is a pointer to the header of the SRTCP packet (before the call). After the function returns, it

points to the rtp packet if err status ok was returned; otherwise, the value of the data to which it
points is undefined.

pkt octet len is a pointer to the length in octets of the complete SRTCP packet (header and body) before
the function call, and of the complete rtp packet after the call, if err status ok was returned.
Otherwise, the value of the data to which it points is undefined.

Returns

• err status ok if the RTCP packet is valid.

• err status auth fail if the SRTCP packet failed the message authentication check.

• err status replay fail if the SRTCP packet is a replay (e.g. has already been processed and accepted).

• [other] if there has been an error in the cryptographic mechanisms.

4.3. DATA ASSOCIATED TO A SRTP SESSION. 35

4.3 data associated to a SRTP session.

Store custom user data within a SRTP session.

Functions

• void srtp set user data (srtp t ctx, void ∗data)

srtp set user data() stores the given pointer into the SRTP session for later retrieval.

• void ∗ srtp get user data (srtp t ctx)

srtp get user data() retrieves the pointer to the custom data previously stored with srtp set user data().

4.3.1 Detailed Description

4.3.2 Function Documentation

void∗ srtp get user data (srtp t ctx)

This function is mostly useful for retrieving data associated to a SRTP session when an event fires. The user can then
get such a custom data by calling this function with the session field of the srtp event data t struct as argument.

Parameters

ctx is the srtp t context in which the given data pointer was stored.

Returns

void∗ pointer to the user data.

void srtp set user data (srtp t ctx, void ∗ data)

36 CHAPTER 4. MODULE DOCUMENTATION

Parameters

ctx is the srtp t context in which the given data pointer is stored.
data is a pointer to the custom information (struct, function, etc) associated with the SRTP session.

Returns

void.

4.4. SRTP EVENTS AND CALLBACKS 37

4.4 SRTP events and callbacks

libSRTP can use a user-provided callback function to handle events.

Data Structures

• struct srtp event data t

srtp event data t is the structure passed as a callback to the event handler function

Typedefs

• typedef struct srtp event data t srtp event data t

srtp event data t is the structure passed as a callback to the event handler function
• typedef void(srtp event handler func t)(srtp event data t ∗data)

srtp event handler func t is the function prototype for the event handler.

Enumerations

• enum srtp event t { event ssrc collision, event key soft limit, event key hard limit, event packet index limit }
srtp event t defines events that need to be handled

Functions

• err status t srtp install event handler (srtp event handler func t func)

sets the event handler to the function supplied by the caller.
• const char ∗ srtp get version string (void)

Returns the version string of the library.
• unsigned int srtp get version (void)

Returns the numeric representation of the library version.

4.4.1 Detailed Description

libSRTP allows a user to provide a callback function to handle events that need to be dealt with outside of the data
plane (see the enum srtp event t for a description of these events). Dealing with these events is not a strict necessity;

38 CHAPTER 4. MODULE DOCUMENTATION

they are not security-critical, but the application may suffer if they are not handled. The function srtp set event handler()
is used to provide the callback function.

A default event handler that merely reports on the events as they happen is included. It is also possible to set the event
handler function to NULL, in which case all events will just be silently ignored.

4.4.2 Typedef Documentation

typedef struct srtp event data t srtp event data t

The struct srtp event data t holds the data passed to the event handler function.

typedef void(srtp event handler func t)(srtp event data t ∗data)

The typedef srtp event handler func t is the prototype for the event handler function. It has as its only argument an
srtp event data t which describes the event that needs to be handled. There can only be a single, global handler for all
events in libSRTP.

4.4.3 Enumeration Type Documentation

enum srtp event t

The enum srtp event t defines events that need to be handled outside the ‘data plane’, such as SSRC collisions and
key expirations.

When a key expires or the maximum number of packets has been reached, an SRTP stream will enter an ‘expired’ state
in which no more packets can be protected or unprotected. When this happens, it is likely that you will want to either
deallocate the stream (using srtp stream dealloc()), and possibly allocate a new one.

When an SRTP stream expires, the other streams in the same session are unaffected, unless key sharing is used by
that stream. In the latter case, all of the streams in the session will expire.

Enumerator

event ssrc collision An SSRC collision occured.

event key soft limit An SRTP stream reached the soft key usage limit and will expire soon.

4.4. SRTP EVENTS AND CALLBACKS 39

event key hard limit An SRTP stream reached the hard key usage limit and has expired.

event packet index limit An SRTP stream reached the hard packet limit (2∧48 packets).

4.4.4 Function Documentation

err status t srtp install event handler (srtp event handler func t func)

The function call srtp install event handler(func) sets the event handler function to the value func. The value NULL is
acceptable as an argument; in this case, events will be ignored rather than handled.

Parameters

func is a pointer to a fuction that takes an srtp event data t pointer as an argument and returns void.
This function will be used by libSRTP to handle events.

40 CHAPTER 4. MODULE DOCUMENTATION

4.5 Cryptographic Algorithms

Modules

• Cipher Types

Each cipher type is identified by an unsigned integer. The cipher types available in this edition of libSRTP are given by
the #defines below.

• Authentication Function Types

Each authentication function type is identified by an unsigned integer. The authentication function types available in this
edition of libSRTP are given by the #defines below.

4.5.1 Detailed Description

This library provides several different cryptographic algorithms, each of which can be selected by using the cipher ←↩
type id t and auth type id t. These algorithms are documented below.

Authentication functions that use the Universal Security Transform (UST) must be used in conjunction with a cipher
other than the null cipher. These functions require a per-message pseudorandom input that is generated by the cipher.

The identifiers STRONGHOLD AUTH and STRONGHOLD CIPHER identify the strongest available authentication func-
tion and cipher, respectively. They are resolved at compile time to the strongest available algorithm. The stronghold
algorithms can serve as did the keep of a medieval fortification; they provide the strongest defense (or the last refuge).

4.6. CIPHER TYPES 41

4.6 Cipher Types

Each cipher type is identified by an unsigned integer. The cipher types available in this edition of libSRTP are given by
the #defines below.

Macros

• #define NULL CIPHER 0

The null cipher performs no encryption.

• #define AES ICM 1

AES Integer Counter Mode (AES ICM)

• #define AES 128 ICM AES ICM

AES-128 Integer Counter Mode (AES ICM) AES-128 ICM is a deprecated alternate name for AES ICM.

• #define SEAL 2

SEAL 3.0.

• #define AES CBC 3

AES Cipher Block Chaining mode (AES CBC)

• #define AES 128 CBC AES CBC

AES-128 Cipher Block Chaining mode (AES CBC)

• #define STRONGHOLD CIPHER AES ICM

Strongest available cipher.

• #define AES 192 ICM 4

AES-192 Integer Counter Mode (AES ICM) AES-192 ICM is a deprecated alternate name for AES ICM.

• #define AES 256 ICM 5

AES-256 Integer Counter Mode (AES ICM) AES-256 ICM is a deprecated alternate name for AES ICM.

• #define AES 128 GCM 6

AES-128 GCM Galois Counter Mode (AES GCM)

• #define AES 256 GCM 7

AES-256 GCM Galois Counter Mode (AES GCM)

Typedefs

• typedef uint32 t cipher type id t

A cipher type id t is an identifier for a particular cipher type.

42 CHAPTER 4. MODULE DOCUMENTATION

4.6.1 Detailed Description

A cipher type id t is an identifier for a cipher type; only values given by the #defines above (or those present in the file
crypto types.h) should be used.

The identifier STRONGHOLD CIPHER indicates the strongest available cipher, allowing an application to choose the
strongest available algorithm without any advance knowledge about the avaliable algorithms.

4.6.2 Macro Definition Documentation

#define AES 128 CBC AES CBC

AES-128 CBC is a deprecated alternate name for AES CBC.

#define AES 128 GCM 6

AES-128 GCM is the variant of galois counter mode that is used by Secure RTP. This cipher uses a 16-octet key.

#define AES 256 GCM 7

AES-256 GCM is the variant of galois counter mode that is used by Secure RTP. This cipher uses a 32-octet key.

#define AES CBC 3

AES CBC is the AES Cipher Block Chaining mode. This cipher uses a 16-, 24-, or 32-octet key.

#define AES ICM 1

AES ICM is the variant of counter mode that is used by Secure RTP. This cipher uses a 16-, 24-, or 32-octet key
concatenated with a 14-octet offset (or salt) value.

4.6. CIPHER TYPES 43

#define NULL CIPHER 0

The NULL CIPHER leaves its inputs unaltered, during both the encryption and decryption operations. This cipher can
be chosen to indicate that no encryption is to be performed.

#define SEAL 2

SEAL is the Software-Optimized Encryption Algorithm of Coppersmith and Rogaway. Nota bene: this cipher is IBM
proprietary.

#define STRONGHOLD CIPHER AES ICM

This identifier resolves to the strongest cipher type available.

4.6.3 Typedef Documentation

typedef uint32 t cipher type id t

A cipher type id t is an integer that represents a particular cipher type, e.g. the Advanced Encryption Standard (AES).
A NULL CIPHER is avaliable; this cipher leaves the data unchanged, and can be selected to indicate that no encryption
is to take place.

44 CHAPTER 4. MODULE DOCUMENTATION

4.7 Authentication Function Types

Each authentication function type is identified by an unsigned integer. The authentication function types available in this
edition of libSRTP are given by the #defines below.

Macros

• #define NULL AUTH 0

The null authentication function performs no authentication.

• #define UST TMMHv2 1

UST with TMMH Version 2.

• #define UST AES 128 XMAC 2

(UST) AES-128 XORMAC

• #define HMAC SHA1 3

HMAC-SHA1.

• #define STRONGHOLD AUTH HMAC SHA1

Strongest available authentication function.

Typedefs

• typedef uint32 t auth type id t

An auth type id t is an identifier for a particular authentication function.

4.7.1 Detailed Description

An auth type id t is an identifier for an authentication function type; only values given by the #defines above (or those
present in the file crypto types.h) should be used.

The identifier STRONGHOLD AUTH indicates the strongest available authentication function, allowing an application to
choose the strongest available algorithm without any advance knowledge about the avaliable algorithms. The stronghold
algorithms can serve as did the keep of a medieval fortification; they provide the strongest defense (or the last refuge).

4.7. AUTHENTICATION FUNCTION TYPES 45

4.7.2 Macro Definition Documentation

#define HMAC SHA1 3

HMAC SHA1 implements the Hash-based MAC using the NIST Secure Hash Algorithm version 1 (SHA1).

#define NULL AUTH 0

The NULL AUTH function does nothing, and can be selected to indicate that authentication should not be performed.

#define STRONGHOLD AUTH HMAC SHA1

This identifier resolves to the strongest available authentication function.

#define UST AES 128 XMAC 2

UST AES 128 XMAC implements AES-128 XORMAC, using UST. Nota bene: the XORMAC algorithm is IBM propri-
etary.

#define UST TMMHv2 1

UST TMMHv2 implements the Truncated Multi-Modular Hash using UST. This function must be used in conjunction
with a cipher other than the null cipher. with a cipher.

4.7.3 Typedef Documentation

typedef uint32 t auth type id t

An auth type id t is an integer that represents a particular authentication function type, e.g. HMAC-SHA1. A NU←↩
LL AUTH is avaliable; this authentication function performs no computation, and can be selected to indicate that no
authentication is to take place.

46 CHAPTER 4. MODULE DOCUMENTATION

4.8 Error Codes

Enumerations

• enum err status t {
err status ok = 0, err status fail = 1, err status bad param = 2, err status alloc fail = 3,
err status dealloc fail = 4, err status init fail = 5, err status terminus = 6, err status auth fail = 7,
err status cipher fail = 8, err status replay fail = 9, err status replay old = 10, err status algo fail = 11,
err status no such op = 12, err status no ctx = 13, err status cant check = 14, err status key expired = 15,
err status socket err = 16, err status signal err = 17, err status nonce bad = 18, err status read fail = 19,
err status write fail = 20, err status parse err = 21, err status encode err = 22, err status semaphore err = 23,
err status pfkey err = 24 }

4.8.1 Detailed Description

Error status codes are represented by the enumeration err status t.

4.8.2 Enumeration Type Documentation

enum err status t

Enumerator

err status ok nothing to report

err status fail unspecified failure

err status bad param unsupported parameter

err status alloc fail couldn’t allocate memory

err status dealloc fail couldn’t deallocate properly

err status init fail couldn’t initialize

err status terminus can’t process as much data as requested

err status auth fail authentication failure

err status cipher fail cipher failure

err status replay fail replay check failed (bad index)

err status replay old replay check failed (index too old)

err status algo fail algorithm failed test routine

err status no such op unsupported operation

4.8. ERROR CODES 47

err status no ctx no appropriate context found

err status cant check unable to perform desired validation

err status key expired can’t use key any more

err status socket err error in use of socket

err status signal err error in use POSIX signals

err status nonce bad nonce check failed

err status read fail couldn’t read data

err status write fail couldn’t write data

err status parse err error parsing data

err status encode err error encoding data

err status semaphore err error while using semaphores

err status pfkey err error while using pfkey

48 CHAPTER 4. MODULE DOCUMENTATION

4.9 Cryptographic Kernel

Modules

• Ciphers

A generic cipher type enables cipher agility, that is, the ability to write code that runs with multiple cipher types. Ciphers
can be used through the crypto kernel, or can be accessed directly, if need be.

4.9.1 Detailed Description

All of the cryptographic functions are contained in a kernel.

4.10. CIPHERS 49

4.10 Ciphers

A generic cipher type enables cipher agility, that is, the ability to write code that runs with multiple cipher types. Ciphers
can be used through the crypto kernel, or can be accessed directly, if need be.

Functions

• err status t cipher type alloc (cipher type t ∗ctype, cipher t ∗∗cipher, unsigned key len)

Allocates a cipher of a particular type.
• err status t cipher init (cipher t ∗cipher, const uint8 t ∗key)

Initialized a cipher to use a particular key. May be invoked more than once on the same cipher.
• err status t cipher set iv (cipher t ∗cipher, void ∗iv)

Sets the initialization vector of a given cipher.
• err status t cipher encrypt (cipher t ∗cipher, void ∗buf, unsigned int ∗len)

Encrypts a buffer with a given cipher.
• err status t cipher output (cipher t ∗c, uint8 t ∗buffer, int num octets to output)

Sets a buffer to the keystream generated by the cipher.
• err status t cipher dealloc (cipher t ∗cipher)

Deallocates a cipher.

4.10.1 Detailed Description

4.10.2 Function Documentation

err status t cipher dealloc (cipher t ∗ cipher)

Warning

May be implemented as a macro.

err status t cipher encrypt (cipher t ∗ cipher, void ∗ buf, unsigned int ∗ len)

Warning

May be implemented as a macro.

50 CHAPTER 4. MODULE DOCUMENTATION

err status t cipher init (cipher t ∗ cipher, const uint8 t ∗ key)

Warning

May be implemented as a macro.

err status t cipher output (cipher t ∗ c, uint8 t ∗ buffer, int num octets to output)

Warning

May be implemented as a macro.

err status t cipher set iv (cipher t ∗ cipher, void ∗ iv)

Warning

May be implemented as a macro.

err status t cipher type alloc (cipher type t ∗ ctype, cipher t ∗∗ cipher, unsigned key len)

Warning

May be implemented as a macro.

Chapter 5

Data Structure Documentation

5.1 crypto policy t Struct Reference

crypto policy t describes a particular crypto policy that can be applied to an SRTP stream.

Data Fields

• cipher type id t cipher type

• int cipher key len

• auth type id t auth type

• int auth key len

• int auth tag len

• sec serv t sec serv

5.1.1 Detailed Description

A crypto policy t describes a particular cryptographic policy that can be applied to an SRTP or SRTCP stream. An
SRTP session policy consists of a list of these policies, one for each SRTP stream in the session.

51

52 CHAPTER 5. DATA STRUCTURE DOCUMENTATION

5.1.2 Field Documentation

int crypto policy t::auth key len

The length of the authentication function key in octets.

int crypto policy t::auth tag len

The length of the authentication tag in octets.

auth type id t crypto policy t::auth type

An integer representing the authentication function.

int crypto policy t::cipher key len

The length of the cipher key in octets.

cipher type id t crypto policy t::cipher type

An integer representing the type of cipher.

sec serv t crypto policy t::sec serv

The flag indicating the security services to be applied.

The documentation for this struct was generated from the following file:

• srtp.h

5.2. DEBUG MODULE T STRUCT REFERENCE 53

5.2 debug module t Struct Reference

The documentation for this struct was generated from the following file:

• err.h

5.3 srtp event data t Struct Reference

srtp event data t is the structure passed as a callback to the event handler function

Data Fields

• srtp t session

• srtp stream t stream

• srtp event t event

5.3.1 Detailed Description

The struct srtp event data t holds the data passed to the event handler function.

5.3.2 Field Documentation

srtp event t srtp event data t::event

An enum indicating the type of event.

srtp t srtp event data t::session

The session in which the event happend.

54 CHAPTER 5. DATA STRUCTURE DOCUMENTATION

srtp stream t srtp event data t::stream

The stream in which the event happend.

The documentation for this struct was generated from the following file:

• srtp.h

5.4 srtp policy t Struct Reference

represents the policy for an SRTP session.

Data Fields

• ssrc t ssrc
• crypto policy t rtp
• crypto policy t rtcp
• unsigned char ∗ key
• ekt policy t ekt
• unsigned long window size
• int allow repeat tx
• struct srtp policy t ∗ next

5.4.1 Detailed Description

A single srtp policy t struct represents the policy for a single SRTP stream, and a linked list of these elements represents
the policy for an entire SRTP session. Each element contains the SRTP and SRTCP crypto policies for that stream, a
pointer to the SRTP master key for that stream, the SSRC describing that stream, or a flag indicating a ‘wildcard’ SSRC
value, and a ‘next’ field that holds a pointer to the next element in the list of policy elements, or NULL if it is the last
element.

The wildcard value SSRC ANY INBOUND matches any SSRC from an inbound stream that for which there is no explicit
SSRC entry in another policy element. Similarly, the value SSRC ANY OUTBOUND will matches any SSRC from an
outbound stream that does not appear in another policy element. Note that wildcard SSRCs &b cannot be used to
match both inbound and outbound traffic. This restriction is intentional, and it allows libSRTP to ensure that no security
lapses result from accidental re-use of SSRC values during key sharing.

5.4. SRTP POLICY T STRUCT REFERENCE 55

Warning

The final element of the list must have its ‘next’ pointer set to NULL.

5.4.2 Field Documentation

int srtp policy t::allow repeat tx

Whether retransmissions of packets with the same sequence number are allowed. (Note that such repeated transmis-
sions must have the same RTP payload, or a severe security weakness is introduced!)

ekt policy t srtp policy t::ekt

Pointer to the EKT policy structure for this stream (if any)

unsigned char∗ srtp policy t::key

Pointer to the SRTP master key for this stream.

struct srtp policy t∗ srtp policy t::next

Pointer to next stream policy.

crypto policy t srtp policy t::rtcp

SRTCP crypto policy.

crypto policy t srtp policy t::rtp

SRTP crypto policy.

56 CHAPTER 5. DATA STRUCTURE DOCUMENTATION

ssrc t srtp policy t::ssrc

The SSRC value of stream, or the flags SSRC ANY INBOUND or SSRC ANY OUTBOUND if key sharing is used for
this policy element.

unsigned long srtp policy t::window size

The window size to use for replay protection.

The documentation for this struct was generated from the following file:

• srtp.h

5.5 ssrc t Struct Reference

An ssrc t represents a particular SSRC value, or a ‘wildcard’ SSRC.

Data Fields

• ssrc type t type

• unsigned int value

5.5.1 Detailed Description

An ssrc t represents a particular SSRC value (if its type is ssrc specific), or a wildcard SSRC value that will match all
outbound SSRCs (if its type is ssrc any outbound) or all inbound SSRCs (if its type is ssrc any inbound).

5.5. SSRC T STRUCT REFERENCE 57

5.5.2 Field Documentation

ssrc type t ssrc t::type

The type of this particular SSRC

unsigned int ssrc t::value

The value of this SSRC, if it is not a wildcard

The documentation for this struct was generated from the following file:

• srtp.h

Index

Authentication Function Types, 44

Cipher Types, 41
Ciphers, 49
Cryptographic Algorithms, 40
Cryptographic Kernel, 48

err status algo fail
Error Codes, 46

err status alloc fail
Error Codes, 46

err status auth fail
Error Codes, 46

err status bad param
Error Codes, 46

err status cant check
Error Codes, 47

err status cipher fail
Error Codes, 46

err status dealloc fail
Error Codes, 46

err status encode err
Error Codes, 47

err status fail
Error Codes, 46

err status init fail
Error Codes, 46

err status key expired
Error Codes, 47

err status no ctx
Error Codes, 46

err status no such op
Error Codes, 46

err status nonce bad
Error Codes, 47

err status ok
Error Codes, 46

err status parse err
Error Codes, 47

err status pfkey err
Error Codes, 47

err status read fail
Error Codes, 47

err status replay fail
Error Codes, 46

err status replay old
Error Codes, 46

err status semaphore err
Error Codes, 47

err status signal err
Error Codes, 47

err status socket err
Error Codes, 47

err status terminus
Error Codes, 46

err status write fail
Error Codes, 47

Error Codes, 46
err status algo fail, 46
err status alloc fail, 46
err status auth fail, 46
err status bad param, 46
err status cant check, 47
err status cipher fail, 46
err status dealloc fail, 46
err status encode err, 47
err status fail, 46
err status init fail, 46
err status key expired, 47
err status no ctx, 46
err status no such op, 46
err status nonce bad, 47
err status ok, 46
err status parse err, 47

58

INDEX 59

err status pfkey err, 47
err status read fail, 47
err status replay fail, 46
err status replay old, 46
err status semaphore err, 47
err status signal err, 47
err status socket err, 47
err status terminus, 46
err status write fail, 47

event key hard limit
SRTP events and callbacks, 38

event key soft limit
SRTP events and callbacks, 38

event packet index limit
SRTP events and callbacks, 39

event ssrc collision
SRTP events and callbacks, 38

SRTP events and callbacks
event key hard limit, 38
event key soft limit, 38
event packet index limit, 39
event ssrc collision, 38

sec serv auth
Secure RTP, 18

sec serv conf
Secure RTP, 18

sec serv conf and auth
Secure RTP, 18

sec serv none
Secure RTP, 18

Secure RTP
sec serv auth, 18
sec serv conf, 18
sec serv conf and auth, 18
sec serv none, 18
ssrc any inbound, 18
ssrc any outbound, 18
ssrc specific, 18
ssrc undefined, 18

ssrc any inbound
Secure RTP, 18

ssrc any outbound
Secure RTP, 18

ssrc specific
Secure RTP, 18

ssrc undefined
Secure RTP, 18

	Introduction to libSRTP
	License and Disclaimer
	Supported Features
	Installing and Building libSRTP
	Applications
	Secure RTP Background
	libSRTP Overview
	Example Code
	ISMA Encryption Support

	Module Index
	Modules

	Data Structure Index
	Data Structures

	Module Documentation
	Secure RTP
	Secure RTCP
	data associated to a SRTP session.
	SRTP events and callbacks
	Cryptographic Algorithms
	Cipher Types
	Authentication Function Types
	Error Codes
	Cryptographic Kernel
	Ciphers

	Data Structure Documentation
	crypto_policy_t Struct Reference
	debug_module_t Struct Reference
	srtp_event_data_t Struct Reference
	srtp_policy_t Struct Reference
	ssrc_t Struct Reference

	Index

